

The Department of Advanced Materials Engineering

Materials and Processes in Polymeric Microelectronics

1

Outline

- Materials and Processes in Polymeric Microelectronics
 - Polymeric Microelectronics
 - Process
 - ➢ Results
 - Applications
- The Department of Advanced Materials Engineering-Specialization in Materials for Microelectronics
 - Materials and Processes in Microelectronics
 - Learning Objectives
 - ≻the "why"
 - ≻the "how"

2

Introduction

- Molecular electronics,
- Optical devices,
- Etch resists,
- Biosensors
- Scaffolds for tissue engineering and fundamental studies in cell biology

Polymeric Microelectronics

- Flexible devices
- E.g. Implanted flexible electrodes:

microelectrode toughness ≈ tissue toughness

• To avoid acute damage caused by conventional rigid electrodes

Research Goals and Motivation

- Development of polymeric based microelectronic technologies for medical and healthcare applications:
- Integration of conductive organic conductors on polymeric substrates for
 - Polymeric biosensors
 - Polymeric implanted electrodes
- Optimization of the electrical and mechanical properties of the integrated films

7

Process : Final Steps

Electroppline nizetioeteftine on Au

Si

Process : Final Steps (Cross Section)

- Cu under-layer is pre-etched in FeCl₃ solution
- then completely etched-out

Polypyrrole microfabrication

Thickness of PPy films deposited on Au-seed from acetonitrile electrolyte

2 microns/50 cycles= 40 nm per cycle

One cycle is about 1 minute

Applications

Bio-sensors on a polymeric chip

Flexible Folded Cuff Electrode

https://www.youtube.com/watch?v=X85Lpuczy3E

Flexible Folded Cuff Electrode

nerve

13

AND

Flexible Cuff Electrodes With Polypyrrole

Flexible electrodes using polypyrrole (PPy) electropolymerization on Au on flexible substrate (PI or SU-8)

Au

MART AND

Applications

- Flexible Folded Cuff Electrode
- Bio-sensors on a polymeric chip
- Implantable Penetrating
 Electrode

Bio-Sensors on a Polymeric Chip

Electrochemical bio-chips

Environmental: Water Toxicity Detection

PPy on Gold, SU8 chip

Bio-Sensors on a Polymeric Chip

for Electrochemical Measurements of Biological Species

Bio-sensors: Electrodeposition of PPy on Gold, SU8 and Polyimide chip

Applications

- Bio-sensors on a polymeric chip
- Implantable Penetrating
 Electrode

Implantable Penetrating Electrode

Implantable Penetrating Electrode

ReNa

Microscope pictures of PI wafer with Au layout after 1st lithography

PI wafer after 2nd lithography

100mm

after 2nd lithography

20

Summary and Conclusions

- A polymeric device was fabricated
- The device was integrated with PPy conductive polymer
- The integrated device applications -
 - Implantable electrodes-
 - flexible cuff
 - penetrating
 - Bio-sensors on a polymeric chip
- Future extension of the research may be far reaching by its application to medical and healthcare investigations and treatment.

"Classical" Materials Laboratories and

Specialization in Materials for Microelectronics

Materials Characterization Laboratory 1 & 2 Courses # 20014, 20015

Learning Outcomes

Students will...

- Become familiar with basic materials characterization techniques through hands-on experience;
- Be able to perform measurements of mechanical properties, analyze the results and compare with values expected from theory or known technical data.

23

Learning Outcomes

Laboratories are also designed to...

- Enhance the understanding of selected subjects of the theoretical courses:
 - Materials Science and Engineering
 - Processing and Manufacturing Technology
 - Advanced Processing, Manufacturing and NDT Methods
 - Ceramic Materials
 - Polymeric Materials
 - Composite Materials
- Demonstrate the usage of a variety of techniques; Emphasize processing – microstructure - property relationships.

Materials Characterization Laboratory 1 & 2

Materials for Microelectronics: Courses and Labs

Learning Outcomes

- At the end their studied, students will have a broad conceptual understanding of:
- the principles of micro-electronic devices -- the "why"
- The technological means of manufacturing them
- A good sense of how the manufacturing looks like from a practical point of view
 - the "how"

Specialization in Materials for Microelectronics

Microelectronics Theory

- Semiconductor devices- physical principles and operational characteristics
- Electro-optic devices
- Advanced device issues
- Failure analysis
- Nanotechnology and nanoelectronics
- Materials characterization
- State-of-the-art integrated-circuit technologies.

Materials Characterization Laboratory course # 20017

• Wet etching and dry etching (reactive ion

Microfabrication:

Photo-lithography

Nanofabrication

etch)

Electron beam lithography

PVD (physical vapor deposition)

Working in the clean room

29

Materials Characterization Laboratory course # 20017

• Nanofabrication- Electron beam lithography

Dr. Shimon Eliav-Head of the Nanofabrication Unit, the Hebrew University

Materials Characterization – Advanced Laboratory - course # 20016

- Optical measurements of thin films
- Electrical measurements of semiconductors
- Hall effect measurement
- Haines Shockley experiment
- Plasma Etch
- Materials Characterization using SEM and XRD
 - Dr. Inna Popov, Head of the Unit for nano Characterization, the Hebrew university

Materials Characterization – Advanced Laboratory-course no 20016

Materials Characterization using SEM

Courtesy of Dr. Inna Popov, Head of the Unit for Nano Characterization, the Hebrew University 32

The Department of Advanced Materials Engineering

"Classical" Materials Laboratories and Materials for Microelectronics

College of Engineering

Jerusalem

